Breeding apples with broad genetic basis

M. Kellerhals, S. Schütz, I.O. Baumgartner, R. Andreoli, J. Gassmann

Agroscope, Müller-Thurgau-Str. 29, 8820 Wädenswil, Switzerland
markus.kellerhals@agroscope.admin.ch
Outline

- Apple breeding targets at Wädenswil
- The challenge to broaden the genetic basis
- Project ‘Use of apple genetic resources for organic growing’
- Description of Swiss apple genetic resources
- Selection of top candidates for breeding
- Breeding for durable disease resistance with broad genetic background
- Conclusions and outlook
Apple breeding targets

- High fruit quality
- Good tree features (yield, self thinning, etc.)
- Disease resistance
 a) combined resistances
 - ‘major genes’ and ‘polygenic’
 against different pathogens
 - Fire blight (*E. amylovora*)
 - Apple scab (*V. inaequalis*)
 - Powdery mildew (*P. leucotricha*)
 - Leaf blotch (*Marssonina*)
 - Canker (*Nectria*)
 - Storage diseases
 b) pyramided resistances
 against one pathogen
 - *Venturia inaequalis*
The challenge

- Genetic basis in apple breeding is relatively narrow. 6 founders are predominant: Golden Delicious, Cox Orange, Jonathan, McIntosh, Red Delicious, James Grieve (Bannier, 2011).
- Scab resistance ($Rvi6$, Vf) is also based on a few founders.
Use of apple genetic resources for breeding (NAP-project 2016-2019, funding FOAG, Swiss Federal Office for Agriculture)

Project partners

- Agroscope www.agroscope.ch
- Poma Culta (organic dyn.) www.pomaculta.ch
- FiBL (project coordination) www.fibl.org
Swiss National Plan of Action on Plant Genetic Resources for Food and Agriculture (NAP-PGRFA)

„aims at the long term conservation and sustainable use of Plant Genetic Resources for Food and Agriculture“

Concerns agricultural species and their wild relatives

www.bdn.ch
NAP PGRFA – Projects of Fructus/Agroscope to describe the Swiss apple genetic resources

- 2007 - 2010 BEVOG
- 2011 - 2014 BEVOG II
- 2015 - 2018 BEVOG III, NUVOG, WEBEVOG, NEVA
- 2019 - 2022 BEVOG IV and NUVOG II
1308 *Malus* accessions in field for disease evaluation

2 series with accessions to test for *V. inaequalis*, *P. leucotricha*, partially *E. amylovora* and *M. coronaria* susceptibility:

- 608 accessions from 2009 (2nd leaf) - 2014
- 735 accessions from 2017 (2nd leaf) - 2023
- Two trees on M27, no fungicide treatments except in first leaf
- Golden Delicious and Gravensteiner as susceptible references
The ‘Top 30’ for scab and powdery mildew tolerance out of 600

Plot in first leaf 2017
10 trees per accession
Parallel trial of PomaCulta at Hessigkofen
Organic plots
Evaluation of tree and fruit features

The Top 30 are analysed by FiBL also for susceptibility towards *Marssonina coronaria* (plastic tunnel and climate chambers, H.J. Scharer)
Apple accessions with potential for breeding

>25 accession were tested twice low or very low susceptible towards fire blight in glasshouse shoot test → top-candidates

Examples:
Roter Seeapfel, Schorenapfel*, Gurwolfer* → dessert apple quality
Roter Lederapfel, Birrnapfel/Mutterapfel* → suitable for cider (NUVOG)
Schorenapfel*, Midonette*, unbekannt 1013859* → potential for breeding (NUVOG, NAGBA)

* Additionally highly tolerant towards scab and powdery mildew
Accessions used as parents in the NAP-PGRFA project NUVOG

- Midonette
- Wehntaler Hagapfel
- Bovarde
- Brienzer
- Schorenapfel
- Züsigärtner
- Heimenhofer
- unbekannt 1013859
- unbekannt 105538
- unbekannt 103951
- Mutterapfel (Birnapfel)
- Kaister Feldapfel
Scale for scoring macroscopic scab symptoms

(based on Lefrancq et al., 2004)

<table>
<thead>
<tr>
<th>Class</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No visible symptoms</td>
</tr>
<tr>
<td>1</td>
<td>1 to < 5 % sporulation leaf surface</td>
</tr>
<tr>
<td>2</td>
<td>5 to < 10 % sporulation leaf surface</td>
</tr>
<tr>
<td>3</td>
<td>10 to < 25 % sporulation leaf surface</td>
</tr>
<tr>
<td>4</td>
<td>25 to < 50 % sporulation leaf surface</td>
</tr>
<tr>
<td>5</td>
<td>50 to < 75 % sporulation leaf surface</td>
</tr>
<tr>
<td>6</td>
<td>75 to < 100 % sporulation leaf surface</td>
</tr>
</tbody>
</table>

Stellate necrosis
0-25% considered “resistant”, more than 25% considered “susceptible” and discarded pinpoint pits (PPP), stellate chlorosis (SC) and stellate necrosis (SN), n = number of seedlings
Molecular analyses of parents used in the joint NAP-project

<table>
<thead>
<tr>
<th>Accession (Parents)</th>
<th>SSR Markers present for</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACW 14617 (Champagner Reinette x A 810-390)</td>
<td>PI2</td>
</tr>
<tr>
<td>ACW 16981 (La Flamboyante x Milwa)</td>
<td>Md-ACS1</td>
</tr>
<tr>
<td>ACW 20280 (Ariane x Topaz)</td>
<td>Rvi6, Md-ACS1</td>
</tr>
<tr>
<td>Kaister Feldapfel</td>
<td>-</td>
</tr>
<tr>
<td>Schorenapfel</td>
<td>Md-PG1</td>
</tr>
<tr>
<td>Süsser Zila</td>
<td>Md-PG1</td>
</tr>
</tbody>
</table>
Molecular Analyses – Progeny plants

After pre-selection in container plot:

<table>
<thead>
<tr>
<th>Cross</th>
<th>Parents</th>
<th>n</th>
<th>Rvi6</th>
<th>PI2</th>
<th>Md-ACS1 (1/2)</th>
<th>Md-PG1</th>
<th>Share of (combined) genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1635</td>
<td>ACW 16981 (Md-ACS1) x Schorenapfel (Md-PG1)</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>38% Md-PG1</td>
</tr>
<tr>
<td>1636</td>
<td>ACW 14617 (PI2) x süßer Zila (Md-PG1)</td>
<td>48</td>
<td>-</td>
<td>92%</td>
<td>54%</td>
<td>-</td>
<td>52% PI2, Md-ACS1 (1/2)</td>
</tr>
<tr>
<td>1637</td>
<td>ACW 20280 (Rvi6, Md-ACS1) x Kaister Feldapfel (-)</td>
<td>176</td>
<td>81%</td>
<td>-</td>
<td>-</td>
<td>17%</td>
<td>13% Rvi6, Md-PG1</td>
</tr>
</tbody>
</table>

Markers for scab resistance, mildew resistance, and fruit quality.
Sensory evaluation (20.11.18, n=4)

Overall score fruit quality: 1: very low, 9: very high

Liveseed Apple Workshop
M. Kellerhals
What is in the pipeline?

ACW 16981: Milwa x La Flamboyante
ACW 19978: ACW 12556 x Sternapi (Top 3 NAGBA)
ACW 21578: Opal x Ohio Reinette (Top 3 NAGBA)
ACW 25831: ACW 13340 (Discovery x Durello di Forli) x CH-Alant (Top 3 NAGBA)
Conclusions and outlook

- Selected apple accessions (genetic resources) are potentially interesting breeding parents that allow for a broader genetic basis.
- The better the accessions are characterized, the more useful these data are for breeders.
- Joint efforts of Agroscope, FiBL and Poma Culta allow for a breeding think tank and for coordinated progress.
- Marketers and consumers should be open for more diversity and its added value.
We acknowledge financial support by FOAG and collaboration with FiBL and PomaCulta
Thank you for your attention

markus.kellerhals@agroscope.admin.ch

www.agroscope.admin.ch